Skip to main content

Summary

The Spectral Shift Adjustment accounts for variations in module performance due to changes in the solar spectrum. PlantPredict implements five spectral correction approaches: None, Monthly Override, Spectral 1 (technology-specific models), Spectral 2 (multi-parameter), and Spectral 3.0 (experimental). The spectral shift factor MM is a multiplier applied to effective irradiance after IAM corrections. The factor depends on atmospheric conditions (, precipitable water) and module technology (Sandia, First Solar POR/QED, or generic multi-parameter).

Inputs

NameSymbolUnitsDescription
Spectral Shift ModelSelection: None, Monthly Override, Spectral_1, Spectral_2, UseSpectral30
Spectral Response TypeModule technology: Sandia, FS_POR, FS_QED (Spectral 1 only)
Spectral Weather TypeWater vapor source: Nelson_Pwat, Nelson_Rh, Ngan_Dewpoint
Pressure-Corrected Air MassAMAM'Air mass corrected for atmospheric pressure
Precipitable WaterWWcmColumn depth of precipitable water vapor
Relative HumidityRHRH%Surface relative humidity
TemperatureTaT_a°CAmbient air temperature
Dewpoint TemperatureTdT_d°CDewpoint temperature
Global Horizontal IrradianceGHIGHIW/m²Measured GHI (Spectral 3.0 only)
Clear Sky IrradianceGHIclearGHI_{clear}W/m²Modeled clear-sky GHI (Spectral 3.0 only)
Module CoefficientsvariesModel-specific coefficients

Outputs

NameSymbolUnitsDescription
Spectral Shift FactorMMMultiplier applied to effective irradiance after IAM

Detailed Description

Model Selection

PlantPredict selects the spectral model based on configuration:
  1. If UseSpectral30 = true: Spectral 3.0 model
  2. If SpectralShiftModel = None: M=1M = 1
  3. If SpectralShiftModel = MonthlyOverride: Monthly user-specified values
  4. If SpectralShiftModel = Spectral_1: Technology-specific models
  5. If SpectralShiftModel = Spectral_2: Multi-parameter model

Model 1: None

No spectral correction: M=1M = 1

Model 2: Monthly Override

User-specified monthly spectral shift factors: M=MmonthM = M_{\text{month}} where MmonthM_{\text{month}} is retrieved from monthly factors table for the current month.

Model 3: Spectral 1 (Technology-Specific Models)

Sandia Polynomial Model

For modules with Sandia spectral response: M=i=0nai(AM)iM = \sum_{i=0}^{n} a_i (AM')^i where [a0,a1,...,an][a_0, a_1, ..., a_n] are Sandia A-factors and AMAM' is pressure-corrected air mass.

First Solar POR Model

For First Solar POR modules (water vapor dependent): M=0.6318+0.1341e0.9757(W+0.05)0.0788M = 0.6318 + 0.1341 \cdot e^{0.9757 (W + 0.05)^{0.0788}} where WW is precipitable water (cm). If W<900W < -900: M=1M = 1 (failsafe).

First Solar QED Model

For First Solar QED modules (water vapor dependent): M=1.2660.0913e1.1987(W+0.5)0.21M = 1.266 - 0.0913 \cdot e^{1.1987 (W + 0.5)^{-0.21}} where WW is precipitable water (cm). If W<900W < -900: M=1M = 1 (failsafe).

Model 4: Spectral 2 (Multi-Parameter Model)

Six-parameter model accounting for air mass and precipitable water: M=b0+b1AM+b2W+b3AM+b4W+b5AMWM = b_0 + b_1 AM' + b_2 W + b_3 \sqrt{AM'} + b_4 \sqrt{W} + b_5 \frac{AM'}{\sqrt{W}} where:
  • [b0,b1,b2,b3,b4,b5][b_0, b_1, b_2, b_3, b_4, b_5] are module-specific Spectral2 coefficients
  • AMAM' is pressure-corrected air mass
  • WW is precipitable water (cm)
Limits applied:
  • If W<0.1W < 0.1: W=0.1W = 0.1
  • If AM>10AM' > 10: AM=10AM' = 10

Model 5: Spectral 3.0 (Experimental)

Seven-parameter model including clear sky index (temporary implementation for First Solar): M=b0Kc+b1W+b2W+b3AM+b4AM+b5AMW+b6M = b_0 \cdot K_c + b_1 \cdot W + b_2 \cdot \sqrt{W} + b_3 \cdot AM' + b_4 \cdot \sqrt{AM'} + b_5 \cdot \frac{AM'}{\sqrt{W}} + b_6 where:
  • Kc=GHI/GHIclearK_c = GHI / GHI_{clear} is clear sky index
  • [b0,b1,b2,b3,b4,b5,b6][b_0, b_1, b_2, b_3, b_4, b_5, b_6] are Spectral30 coefficients
  • AMAM' is pressure-corrected air mass
  • WW is precipitable water (cm)
Clear sky index limits:
  • If KcK_c is NaN: Kc=0K_c = 0
  • If Kc>2K_c > 2: Kc=2K_c = 2
Limits applied:
  • If W<0W < 0: W=0\sqrt{W} = 0
  • If AM<0AM' < 0: AM=0\sqrt{AM'} = 0
  • If W=0W = 0 or AM=0AM' = 0: AM/W=0AM' / \sqrt{W} = 0

Precipitable Water Calculation

If precipitable water is not directly available, it is calculated from relative humidity or dewpoint.

From Relative Humidity (Gueymard 1994)

h=0.1(0.4976+1.5265TK273.15+e13.6897TK273.1514.9188(TK273.15)3)h = 0.1 \cdot \left( 0.4976 + 1.5265 \frac{T_K}{273.15} + e^{13.6897 \frac{T_K}{273.15} - 14.9188 (\frac{T_K}{273.15})^3} \right) ρv=216.7RH100TKe22.334914TK10.922(100TK)20.39015TK100\rho_v = \frac{216.7 \cdot RH}{100 \cdot T_K} \cdot e^{22.33 - \frac{4914}{T_K} - 10.922 (\frac{100}{T_K})^2 - 0.39015 \frac{T_K}{100}} W=hρvW = h \cdot \rho_v where TK=T+273.15T_K = T + 273.15 (temperature in Kelvin), RHRH is relative humidity (%), and WW is in cm.

From Dewpoint (August-Roche-Magnus)

Version 10 and Earlier: es(Td)=6.11e17.1Td234.2+Tde_s(T_d) = 6.11 \cdot e^{\frac{17.1 T_d}{234.2 + T_d}} es(T)=6.11e17.1T234.2+Te_s(T) = 6.11 \cdot e^{\frac{17.1 T}{234.2 + T}} RH=100es(Td)es(T)RH = 100 \cdot \frac{e_s(T_d)}{e_s(T)} Version 11 and Later (AEKR Coefficients): es(Td)=6.1094e17.625Td243.04+Tde_s(T_d) = 6.1094 \cdot e^{\frac{17.625 T_d}{243.04 + T_d}} es(T)=6.1094e17.625T243.04+Te_s(T) = 6.1094 \cdot e^{\frac{17.625 T}{243.04 + T}} RH=100es(Td)es(T)RH = 100 \cdot \frac{e_s(T_d)}{e_s(T)} Then calculate WW from RHRH using the Gueymard method above.

Application to Irradiance

Spectral shift factor applied after IAM: Ebeam,spectral=Ebeam,IAM×ME_{beam,spectral} = E_{beam,IAM} \times M Esky,spectral=Esky,IAM×ME_{sky,spectral} = E_{sky,IAM} \times M Eground,spectral=Eground,IAM×ME_{ground,spectral} = E_{ground,IAM} \times M

References

  • Gueymard, C. (1994). Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States. Solar Energy, 53(1), 57-71.
  • King, D. L., Boyson, W. E., & Kratochvil, J. A. (2004). Photovoltaic array performance model. SAND2004-3535, Sandia National Laboratories.
  • Marion, B., MacAlpine, S., Deline, C., et al. (2017). A practical irradiance model for bifacial PV modules. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 1537-1542.
  • pvlib-python Documentation. Atmosphere Module: gueymard94_pw. https://pvlib-python.readthedocs.io/