Skip to main content

Summary

The Bifacial Irradiance model calculates rear-side irradiance for bifacial PV modules using view factor geometry, ground-reflected irradiance, and ray-tracing for structural shading. PlantPredict calculates rear-side irradiance by dividing row spacing into 100 intervals and computing sky configuration factors and ground shading factors for each interval. The model accounts for row type (interior, first, last, single), module geometry (tilt, clearance height, row spacing), surface properties (glass or AR glass), and tracking. Rear-side irradiance is combined with front-side irradiance weighted by the bifaciality factor to calculate effective POA irradiance.

Inputs

NameSymbolUnitsDescription
Row TypeInterior, First, Last, or Single
Module Tilt Angleβ\betadegreesTilt angle from horizontal
Ground ClearanceCCmVertical clearance at tilt = 0
Row-to-Row PitchD+cos(β)D + \cos(\beta)mHorizontal distance between rows
Albedoρ\rhoGround reflectance (0-1)
Surface TypeGlass or AR Glass (front and rear)
Cell RowsNumber of cell rows in module
DNI, DHIIDN,IDHI_{DN}, I_{DH}W/m²Direct and diffuse horizontal irradiance
Solar Positionθz,γs\theta_z, \gamma_sradiansZenith and azimuth angles
Module Azimuthγm\gamma_mdegreesModule surface azimuth
Structure Shading%Rear-side structure shading fraction
Backside Mismatch%Rear-side irradiance mismatch loss
Bifaciality Factorϕ\phiRatio of rear-to-front efficiency (0-1)
Transmission Factorτtrans\tau_{trans}Ground transmission factor for shaded ground

Outputs

NameSymbolUnitsDescription
Rear Ground GHIW/m²Ground irradiance array (100 values)
Front Ground GHIW/m²Front ground irradiance array (100 values)
Rear Sky Config FactorsRear sky view factors (100 values)
Front Sky Config FactorsFront sky view factors (100 values)
Rear GTIW/m²Rear-side irradiance array (6 cell row values)
Average Back IrradianceW/m²Mean rear irradiance after structure shading and mismatch
Back Side IrradianceW/m²Rear irradiance before structure shading
Structure Shading LossW/m²Loss due to rear structure shading
Backside Mismatch LossW/m²Loss due to rear irradiance non-uniformity
GTI Back BroadbandW/m²Rear-side broadband irradiance from Perez model

Detailed Description

Calculation Sequence

  1. Calculate sky configuration factors for front and rear surfaces (100 ground intervals)
  2. Calculate ground shading factors for front and rear surfaces
  3. Apply Perez transposition to calculate ground GHI at each interval
  4. Calculate front surface irradiances (6 cell row positions)
  5. Calculate rear surface irradiances (6 cell row positions)
  6. Apply structure shading and backside mismatch losses
  7. Calculate average rear irradiance
  8. Weight rear irradiance by bifaciality factor

Tracking Geometry

For single-axis tracking, module tilt β\beta and clearance CC are updated at each timestep: h=sin(β)h = \sin(\beta) x1=cos(β)x_1 = \cos(\beta) D=row spacingx1D = \text{row spacing} - x_1 C=hub heighthcollector bandwidth2C = \text{hub height} - h \cdot \frac{\text{collector bandwidth}}{2} where hub height is ground clearance at tilt = 0, and collector bandwidth is module width.

Sky Configuration Factors

The model divides row-to-row spacing into 100 intervals (Δ=D+x1100\Delta = \frac{D + x_1}{100}) and calculates sky view factors at the midpoint of each interval. For each interval ii, horizontal position: x=Δ2+iΔx = -\frac{\Delta}{2} + i \cdot \Delta Angles to adjacent row edges: β1=max(arctanh+C2(D+x1)x,arctanC2(D+x1)x1x)\beta_1 = \max\left(\arctan\frac{h+C}{2(D+x_1) - x}, \arctan\frac{C}{2(D+x_1) - x_1 - x}\right) β2=min(arctanh+CD+x1x,arctanCD+x1x1x)\beta_2 = \min\left(\arctan\frac{h+C}{D+x_1-x}, \arctan\frac{C}{D+x_1-x_1-x}\right) β3=max(arctanh+CD+x1x,arctanCD+x1x1x)\beta_3 = \max\left(\arctan\frac{h+C}{D+x_1-x}, \arctan\frac{C}{D+x_1-x_1-x}\right) β4=arctanh+Cx1x\beta_4 = \arctan\frac{h+C}{x_1-x} β5=arctanCx\beta_5 = \arctan\frac{C}{-x} β6=arctanh+CDx\beta_6 = \arctan\frac{h+C}{-D-x} Sky view factor components: sky1={0.5(cosβ1cosβ2),β2>β10,otherwise\text{sky}_1 = \begin{cases} 0.5(\cos\beta_1 - \cos\beta_2), & \beta_2 > \beta_1 \\ 0, & \text{otherwise} \end{cases} sky2={0.5(cosβ3cosβ4),β4>β30,otherwise\text{sky}_2 = \begin{cases} 0.5(\cos\beta_3 - \cos\beta_4), & \beta_4 > \beta_3 \\ 0, & \text{otherwise} \end{cases} sky3={0.5(cosβ5cosβ6),β6>β50,otherwise\text{sky}_3 = \begin{cases} 0.5(\cos\beta_5 - \cos\beta_6), & \beta_6 > \beta_5 \\ 0, & \text{otherwise} \end{cases} Sky Config Factor[i]=sky1+sky2+sky3\text{Sky Config Factor}[i] = \text{sky}_1 + \text{sky}_2 + \text{sky}_3 Row type modifications:
  • First row rear: β6=π\beta_6 = \pi (no row in front)
  • Last row rear: β3=0\beta_3 = 0 (no row behind)
  • Single row rear: β3=0,β6=π\beta_3 = 0, \beta_6 = \pi
  • Similar adjustments for front surface

Ground Irradiance at Intervals

Perez transposition applied to horizontal plane (β=0\beta = 0): IPerez=Iiso+Ics+IbeamI_{Perez} = I_{iso} + I_{cs} + I_{beam} For each of 100 ground intervals: Ground GHI[i]=IisoSky Config[i]+{(Ibeam+Ics),unshaded(Ibeam+Ics)τtrans,shaded\text{Ground GHI}[i] = I_{iso} \cdot \text{Sky Config}[i] + \begin{cases} (I_{beam} + I_{cs}), & \text{unshaded} \\ (I_{beam} + I_{cs}) \cdot \tau_{trans}, & \text{shaded} \end{cases} where shading status determined by ground shading factors (ray-tracing calculation).

Rear Surface Irradiance

Calculate at 6 cell row positions (evenly spaced across module height). For each cell row position jj: IAM for rear surface: Rear tilt = 180°β180° - \beta, rear azimuth = module azimuth 180°-180° Calculate rear incidence angle and apply Physical IAM (glass or AR glass). Rear sky diffuse: Irear,sky[j]=IDHMarion Diffuse(rear orientation)fIAM,rearI_{rear,sky}[j] = I_{DH} \cdot \text{Marion Diffuse}(\text{rear orientation}) \cdot f_{IAM,rear} Rear ground-reflected: Sample ground GHI from 100-element array based on cell row position, apply albedo and view geometry. Rear beam: If sun is behind module (θrear<90°\theta_{rear} < 90°): Irear,beam[j]=IDNcos(θrear)fIAM,rearI_{rear,beam}[j] = I_{DN} \cdot \cos(\theta_{rear}) \cdot f_{IAM,rear} Otherwise: Irear,beam[j]=0I_{rear,beam}[j] = 0 Total rear GTI: Rear GTI[j]=Irear,sky[j]+Irear,ground[j]+Irear,beam[j]\text{Rear GTI}[j] = I_{rear,sky}[j] + I_{rear,ground}[j] + I_{rear,beam}[j]

Structure Shading and Mismatch

Version 09 and Earlier: Erear,avg=Rear GTI(1fstructure)E_{rear,avg} = \overline{\text{Rear GTI}} \cdot (1 - f_{structure}) Version 10 and Later: Erear,avg=Rear GTI(1fstructure)(1fmismatch)E_{rear,avg} = \overline{\text{Rear GTI}} \cdot (1 - f_{structure}) \cdot (1 - f_{mismatch}) where:
  • Rear GTI\overline{\text{Rear GTI}} = mean of 6 cell row irradiances
  • fstructuref_{structure} = structure shading fraction (user-defined)
  • fmismatchf_{mismatch} = backside mismatch fraction (user-defined)

Effective POA Irradiance

EPOA,eff=EPOA,front+ϕErear,avgE_{POA,eff} = E_{POA,front} + \phi \cdot E_{rear,avg} where ϕ\phi is bifaciality factor (rear-to-front efficiency ratio).

Alternate Mode: User-Specified Backside POAI

If UseBacksidePOAI = true, user provides rear irradiance directly: Erear,avg=Backside POAI (user)(1fstructure)(1fmismatch)E_{rear,avg} = \text{Backside POAI (user)} \cdot (1 - f_{structure}) \cdot (1 - f_{mismatch})

References

  • Marion, B., MacAlpine, S., Deline, C., et al. (2017). A practical irradiance model for bifacial PV modules. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 1537-1542.
  • Deline, C., Ayala Pelaez, S., MacAlpine, S., & Olalla, C. (2020). Bifacial PV system mismatch loss estimation and parameterization. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 2281-2286.