Skip to main content

Summary

Diffuse-Direct models separate global horizontal irradiance () into its direct normal irradiance () and diffuse horizontal irradiance () components. PlantPredict implements three decomposition models: Erbs, Reindl, and DIRINT. These models use empirically derived relationships based on the and atmospheric parameters to estimate the diffuse fraction of GHI under varying sky conditions.

Inputs

NameSymbolUnitsDescription
Global Horizontal IrradianceGHIGHIW/m²Total irradiance on horizontal surface from weather data
Extraterrestrial IrradianceDNIextraDNI_{extra}W/m²Solar irradiance at top of atmosphere
Solar Zenith Angleθz\theta_zdegreesAngle between sun and local vertical
Air TemperatureTaT_a°CAmbient air temperature (Reindl model only)
Relative HumidityRHRH%Relative humidity (Reindl model only)
Atmospheric PressurePPhPaLocal atmospheric pressure, used for air mass calculation (DIRINT model only)

Outputs

NameSymbolUnitsDescription
Diffuse Horizontal IrradianceDHIDHIW/m²Solar radiation from the sky dome (excluding direct beam)
Direct Normal IrradianceDNIDNIW/m²Direct beam component perpendicular to sun’s rays
Diffuse Fractionfdf_dRatio of diffuse to total global irradiance

Detailed Description

All models begin by computing the clearness index, representing the fraction of extraterrestrial irradiance reaching the ground: Kt=GHIDNIextracos(θz)K_t = \frac{GHI}{DNI_{extra} \cos(\theta_z)} where θz\theta_z is the solar . KtK_t is set to 0 if θz87.9°\theta_z \geq 87.9°. The clearness index characterizes sky conditions from overcast (Kt<0.3K_t < 0.3) to clear (Kt>0.7K_t > 0.7).

Erbs Model

The Erbs model uses only clearness index to compute diffuse fraction fdf_d using a piecewise polynomial function:
KtK_t valueDiffuse Fraction Equation
Kt0.22K_t \leq 0.22fd=1.00.09Ktf_d = 1.0 - 0.09 K_t
0.22<Kt0.80.22 < K_t \leq 0.8fd=0.95110.1604Kt+4.388Kt216.638Kt3+12.336Kt4f_d = 0.9511 - 0.1604 K_t + 4.388 K_t^2 - 16.638 K_t^3 + 12.336 K_t^4
Kt>0.8K_t > 0.8fd=0.165f_d = 0.165
Once fdf_d is determined, the DHI is calculated, then the DNI is obtained from the : DHI=fd×GHIDHI = f_d \times GHI DNI=GHIDHIcos(θz)DNI = \frac{GHI - DHI}{\cos(\theta_z)}

Reindl Model

The Reindl model extends the clearness index approach by incorporating solar zenith angle, air temperature, and relative humidity, accounting for sun position and atmospheric effects on scattering. When relative humidity is provided in the weather file (fraction from 0 to 1):
KtK_t ValueDiffuse Fraction Equation
0Kt0.30 \leq K_t \leq 0.3fd=10.232Kt+0.0239cos(θz)0.000682Ta+0.0195RHf_d = 1 - 0.232 K_t + 0.0239 \cos(\theta_z) - 0.000682 T_a + 0.0195 RH
0.3<Kt0.830.3 < K_t \leq 0.83fd=1.3291.716Kt+0.267cos(θz)0.00357Ta+0.106RHf_d = 1.329 - 1.716 K_t + 0.267 \cos(\theta_z) - 0.00357 T_a + 0.106 RH
Kt>0.83K_t > 0.83fd=0.426Kt0.256cos(θz)+0.00349Ta+0.0734RHf_d = 0.426 K_t - 0.256 \cos(\theta_z) + 0.00349 T_a + 0.0734 RH
When relative humidity is not provided in the weather file:
KtK_t ValueDiffuse Fraction Equation
0Kt0.30 \leq K_t \leq 0.3fd=1.020.254Kt+0.0123cos(θz)f_d = 1.02 - 0.254 K_t + 0.0123 \cos(\theta_z)
0.3<Kt0.830.3 < K_t \leq 0.83fd=1.41.749Kt+0.177cos(θz)f_d = 1.4 - 1.749 K_t + 0.177 \cos(\theta_z)
Kt>0.83K_t > 0.83fd=0.486Kt0.182cos(θz)f_d = 0.486 K_t - 0.182 \cos(\theta_z)
Physical limits: The empirical correlations can produce non-physical values at edge cases. The following bounds from Reindl et al. (1990) are applied to clamp results:
KtK_t ValueLimitsReason
Kt0.3K_t \leq 0.3fd1.0f_d \leq 1.0Diffuse fraction cannot exceed 100%
0.3<Kt0.830.3 < K_t \leq 0.830.1fd0.9710.1 \leq f_d \leq 0.971Prevents regression overshoot
Kt>0.83K_t > 0.83fd0.1f_d \geq 0.1Minimum diffuse from atmospheric scattering
PlantPredict uses 0.83 as the upper clearness index threshold (modified from 0.78 in the original published model). Once fdf_d is determined, the DHI is calculated, then the DNI is obtained from the : DHI=fd×GHIDHI = f_d \times GHI DNI=GHIDHIcos(θz)DNI = \frac{GHI - DHI}{\cos(\theta_z)}

DIRINT Model

The DIRINT (Direct Insolation Radiation INTegration) model is an enhancement of the DISC model. It first computes an initial DNI estimate using DISC, then applies a correction factor based on temporal stability and atmospheric conditions. This allows DIRINT to distinguish between steady hazy conditions and variable cloudy conditions that have similar instantaneous clearness indices. DIRINT uses pressure-corrected AMAM' as an input, calculated internally using the Bird-Hulstrom formula (see Air Mass for details). Step 1: DISC Initial Estimate The DISC (Direct Insolation Simulation Code) model computes an initial DNI estimate using direct normal factors:
  • KncK_{nc} = Clear-sky transmittance: theoretical maximum under clear conditions, decreasing with air mass
  • ΔKn\Delta K_n = Transmittance reduction: correction for clouds, aerosols, and (derived from KtK_t)
  • KnK_n = Actual transmittance: net transmittance after atmospheric effects
The clear-sky transmittance is a polynomial function of air mass: Knc=0.8660.122AM+0.0121AM20.000653AM3+0.000014AM4K_{nc} = 0.866 - 0.122 AM' + 0.0121 AM'^2 - 0.000653 AM'^3 + 0.000014 AM'^4 The transmittance reduction uses coefficients AA, BB, CC that depend on KtK_t: ΔKn=A+BeC×AM\Delta K_n = A + B e^{C \times AM'} where each coefficient X{A,B,C}X \in \{A, B, C\} is computed as: X=c0+c1Kt+c2Kt2+c3Kt3X = c_0 + c_1 K_t + c_2 K_t^2 + c_3 K_t^3
For Kt>0.6K_t > 0.6:
Coefficient Xc0c_0c1c_1c2c_2c3c_3
AA−5.74321.77−27.4911.56
BB41.4−118.566.0531.9
CC−47.01184.2−22273.81
For Kt0.6K_t \leq 0.6:
Coefficient Xc0c_0c1c_1c2c_2c3c_3
AA0.512−1.562.286−2.222
BB0.370.96200
CC−0.280.932−2.0480
The actual transmittance and DNI are then: Kn=KncΔKnK_n = K_{nc} - \Delta K_n DNIDISC=Kn×DNIextraDNI_{DISC} = K_n \times DNI_{extra} DNIDISC=0DNI_{DISC} = 0 if any of the following conditions are met:
  • GHI<1GHI < 1 W/m²
  • DNIDISC<0DNI_{DISC} < 0
  • θz>87°\theta_z > 87° (Version 09 and earlier) or θz>90°\theta_z > 90° (Version 10 and later)
Step 2: DIRINT Correction Coefficient Lookup DIRINT improves upon DISC by using four parameters to look up a correction coefficient CDIRINTC_{DIRINT}: modified clearness index (KtK'_t), temporal stability (ΔKt\Delta K'_t), zenith angle (θz\theta_z), and precipitable water (WW, not used by PlantPredict). The modified clearness index normalizes for air mass effects, isolating the influence of clouds and excess atmospheric turbidity: Kt=Kt1.031exp(1.40.9+9.4/AM)+0.1K'_t = \frac{K_t}{1.031 \exp\left(-\frac{1.4}{0.9 + 9.4/AM'}\right) + 0.1} with constraint Kt0.82K'_t \leq 0.82. Temporal stability captures cloud transients by comparing clearness across adjacent timestamps: ΔKt=0.5(KtKt,next+KtKt,prev)\Delta K'_t = 0.5 \left( |K'_t - K'_{t,next}| + |K'_t - K'_{t,prev}| \right) A four-dimensional lookup table retrieves the DIRINT correction coefficient CDIRINTC_{DIRINT} based on binned values of these four parameters. PlantPredict does not use precipitable water as an input for the model and defaults to the “precipitable water unavailable” bin. Step 3: Final DNI and DHI Calculation The final DNI is the DISC estimate scaled by the DIRINT correction coefficient: DNI=DNIDISC×CDIRINTDNI = DNI_{DISC} \times C_{DIRINT} DHI is then derived using the : DHI=GHIDNIcos(θz)DHI = GHI - DNI \cos(\theta_z)

Physical Constraints

All decomposition models apply the following physical constraints:
  • If GHI0GHI \leq 0, then DHI=0DHI = 0 and DNI=0DNI = 0
  • DHIGHIDHI \leq GHI
  • DNI0DNI \geq 0
  • If θz90°\theta_z \geq 90°, then DNI=0DNI = 0

References

  • Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28(4), 293–302.
  • Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar Energy, 45(1), 1–7.
  • Perez, R., Ineichen, P., Maxwell, E., Seals, R., & Zelenka, A. (1992). Dynamic global-to-direct irradiance conversion models. ASHRAE Transactions, 98(1), 354–369.
  • Maxwell, E. L. (1987). A quasi-physical model for converting hourly global horizontal to direct normal insolation. Technical Report SERI/TR-215-3087, Solar Energy Research Institute.