Skip to main content

Summary

Parameter Translation scales the five single diode model parameters from Standard Test Conditions (STC: 25°C, 1000 W/m²) to actual operating conditions. PlantPredict applies physically-based scaling relationships for series resistance, shunt resistance, diode ideality factor, saturation current, short-circuit current, and photocurrent. Temperature scaling uses linear or polynomial relationships, while irradiance scaling uses exponential relationships for shunt resistance and linear relationships for photocurrent. All parameters are calculated before solving the single diode circuit equation.

Inputs

NameSymbolUnitsDescription
STC ParametersvariousFive parameters at 25°C, 1000 W/m²
Series Resistance (STC)Rs,refR_{s,ref}ΩSeries resistance at STC
Shunt Resistance (STC)Rsh,refR_{sh,ref}ΩShunt resistance at STC
Diode Ideality Factor (STC)γref\gamma_{ref}Ideality factor at STC
Saturation Current (STC)I0,refI_{0,ref}ASaturation current at STC
Short-Circuit Current (STC)Isc,refI_{sc,ref}AShort-circuit current at STC
Reference TemperatureTrefT_{ref}KReference temperature (typically 298.15 K)
Actual TemperatureTactualT_{actual}KOperating cell temperature
Reference IrradianceGrefG_{ref}W/m²Reference irradiance (1000 W/m²)
Actual IrradianceGactualG_{actual}W/m²Operating irradiance
Temperature CoefficientsvariousvariousLinear temperature dependencies
Dark Shunt ResistanceRsh,0R_{sh,0}ΩShunt resistance at zero irradiance
Shunt ExponentRsh,expR_{sh,exp}Exponential dependency coefficient
Recombination Parameterdi2/utdi_2/u_tRecombination parameter (advanced model)
Built-in VoltageVbiV_{bi}VBuilt-in junction voltage per cell (advanced model)
Bandgap VoltageEgE_geVSemiconductor bandgap (1.12 eV for c-Si)
Elementary ChargeqqC1.602×10⁻¹⁹ C
Boltzmann ConstantkkJ/K1.381×10⁻²³ J/K
Number of CellsNsN_sCells in series

Outputs

NameSymbolUnitsDescription
Series ResistanceRsR_sΩScaled series resistance
Shunt ResistanceRshR_{sh}ΩScaled shunt resistance
Diode Ideality Factorγ\gammaScaled ideality factor
Alphaα\alpha1/Vq/(kTNsγ)q/(k T N_s \gamma)
Saturation CurrentDNIextraDNI_{extra}AScaled saturation current
Short-Circuit CurrentIscI_{sc}AScaled short-circuit current
PhotocurrentIphI_{ph}AScaled photocurrent

Detailed Description

Series Resistance Scaling

Rs=Rs,ref(1+αRs(TactualTref))R_s = R_{s,ref} (1 + \alpha_{R_s} (T_{actual} - T_{ref})) where αRs\alpha_{R_s} is temperature coefficient of series resistance. In PlantPredict implementation: αRs=0\alpha_{R_s} = 0 (not used), so: Rs=Rs,refR_s = R_{s,ref} Then add DC wiring resistance: RsRs+Rs,DCR_s \leftarrow R_s + R_{s,DC}

Shunt Resistance Scaling

Rsh=Rsh,ref+(Rsh,0Rsh,ref)exp(Rsh,expGactualGref)R_{sh} = R_{sh,ref} + (R_{sh,0} - R_{sh,ref}) \exp\left(-R_{sh,exp} \frac{G_{actual}}{G_{ref}}\right) where:
  • Rsh,refR_{sh,ref} is shunt resistance at STC
  • Rsh,0R_{sh,0} is dark shunt resistance (at G=0G = 0)
  • Rsh,expR_{sh,exp} is exponential dependency coefficient

Diode Ideality Factor Scaling

Linear model: γ=γref(1+αγ(TactualTref))\gamma = \gamma_{ref} (1 + \alpha_{\gamma} (T_{actual} - T_{ref})) where αγ\alpha_{\gamma} is linear temperature dependence coefficient. Nonlinear model (OneDiodeRecombinationNonLinear): ΔT=TactualTref\Delta T = T_{actual} - T_{ref} γ=γref(1+aγΔT+bγΔT2+cγΔT3+dγΔT4)\gamma = \gamma_{ref} (1 + a_{\gamma} \Delta T + b_{\gamma} \Delta T^2 + c_{\gamma} \Delta T^3 + d_{\gamma} \Delta T^4) where aγ,bγ,cγ,dγa_{\gamma}, b_{\gamma}, c_{\gamma}, d_{\gamma} are polynomial coefficients.

Alpha Parameter

α=qkTactualNsγ\alpha = \frac{q}{k T_{actual} N_s \gamma} where:
  • q=1.602×1019q = 1.602 \times 10^{-19} C (elementary charge)
  • k=1.381×1023k = 1.381 \times 10^{-23} J/K (Boltzmann constant)
  • TactualT_{actual} in Kelvin
  • NsN_s is number of cells in series
  • γ\gamma is scaled ideality factor

Saturation Current Scaling

I0=I0,refTactual3Tref3exp(qEgkγ(1Tref1Tactual))I_0 = I_{0,ref} \frac{T_{actual}^3}{T_{ref}^3} \exp\left(\frac{q E_g}{k \gamma} \left(\frac{1}{T_{ref}} - \frac{1}{T_{actual}}\right)\right) where:
  • EgE_g is bandgap voltage (eV)
  • All other parameters as defined above

Short-Circuit Current Scaling

Isc=Isc,refGactualGref(1+αIsc(TactualTref))I_{sc} = I_{sc,ref} \frac{G_{actual}}{G_{ref}} (1 + \alpha_{I_{sc}} (T_{actual} - T_{ref})) where αIsc\alpha_{I_{sc}} is temperature coefficient of short-circuit current (typically 0.0003 to 0.0006 /K).

Photocurrent Scaling

Standard model (OneDiode): Iph=Isc,refGactualGref(1+αIsc(TactualTref))I_{ph} = I_{sc,ref} \frac{G_{actual}}{G_{ref}} (1 + \alpha_{I_{sc}} (T_{actual} - T_{ref})) (Same as IscI_{sc} for standard model) Advanced model (OneDiodeRecombination): If Isc0I_{sc} \leq 0: Iph=0I_{ph} = 0 Otherwise: Iph=Isc+I0(eIscRsα1)+IscRs/Rsh1di2/utNsVbiIscRsI_{ph} = \frac{I_{sc} + I_0 (e^{I_{sc} R_s \alpha} - 1) + I_{sc} R_s / R_{sh}}{1 - \frac{di_2/u_t}{N_s V_{bi} - I_{sc} R_s}} where:
  • di2/utdi_2/u_t is recombination parameter
  • VbiV_{bi} is built-in voltage per cell
  • NsN_s is number of cells in series

References

  • King, D. L., Boyson, W. E., & Kratochvil, J. A. (2004). Photovoltaic array performance model. SAND2004-3535, Sandia National Laboratories.
  • De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80(1), 78–88.