Skip to main content
The P50 Loss Tree provides a comprehensive breakdown of energy losses throughout the PV system, from incident solar resource to final AC energy delivered at the point of interconnection. Each loss factor is calculated as a percentage and represents the energy reduction attributable to that specific mechanism. The calculations reference specific parameters from the Nodal Data exports, allowing users to trace and verify each loss.
Example Loss Tree

Example Loss Tree

Detailed Description of Losses

Irradiance Losses

These losses affect the solar resource before it is converted to electrical energy. They are derived from DC Field Nodal Data parameters and normalized by plane-of-array irradiance.
Loss ParameterDescriptionCalculation
Transposition on PlaneThe change in irradiance from horizontal to the tilted module plane, which can be positive (gain) or negative (loss) depending on array orientation and locationLtrans=(Global POAIGHI)×(100)GHIL_{trans} = \frac{\sum (\text{Global POAI} - \text{GHI}) \times (-100)}{\sum \text{GHI}}
3D Corrected TranspositionAdjustment to transposition calculation when using 3D transposition model to account for site-specific geometry effectsL3D=(Global POAI3D Corrected Global POAI)×1003D Corrected Global POAIL_{3D} = \frac{\sum (\text{Global POAI} - \text{3D Corrected Global POAI}) \times 100}{\sum \text{3D Corrected Global POAI}}
Far (Horizon) ShadingIrradiance loss from distant objects blocking the sun, such as mountains or buildings on the horizonLhorizon=(3D Corrected Global POAIHorizon Shaded Global POAI)×1003D Corrected Global POAIL_{horizon} = \frac{\sum (\text{3D Corrected Global POAI} - \text{Horizon Shaded Global POAI}) \times 100}{\sum \text{3D Corrected Global POAI}}
Near ShadingIrradiance loss from inter-row shading and nearby obstructions within the array fieldLnear=(Horizon Shaded Global POAINear Shaded Global POAI)×1003D Corrected Global POAIL_{near} = \frac{\sum (\text{Horizon Shaded Global POAI} - \text{Near Shaded Global POAI}) \times 100}{\sum \text{3D Corrected Global POAI}}
SoilingIrradiance loss from dust, dirt, snow, or other materials accumulating on the module surfaceLsoil=(Near Shaded Global POAIGlobal POAI After Soiling)×1003D Corrected Global POAIL_{soil} = \frac{\sum (\text{Near Shaded Global POAI} - \text{Global POAI After Soiling}) \times 100}{\sum \text{3D Corrected Global POAI}}
IAM FactorIrradiance loss due to increased reflection at non-normal incidence angles (Incidence Angle Modifier)LIAM=(Global POAI After SoilingGlobal POAI After IAM)×1003D Corrected Global POAIL_{IAM} = \frac{\sum (\text{Global POAI After Soiling} - \text{Global POAI After IAM}) \times 100}{\sum \text{3D Corrected Global POAI}}
SpectralIrradiance loss or gain from atmospheric spectral variations compared to the reference AM1.5 spectrumLspec=(Global POAI After IAMEffective Global POAI)×1003D Corrected Global POAIL_{spec} = \frac{\sum (\text{Global POAI After IAM} - \text{Effective Global POAI}) \times 100}{\sum \text{3D Corrected Global POAI}}
BifacialityEffective irradiance reduction when applying the bifaciality factor to rear-side irradianceLbifi=Effective Back POAI Lost due to BiFaciality×1003D Corrected Global POAIL_{bifi} = \frac{\sum \text{Effective Back POAI Lost due to BiFaciality} \times 100}{\sum \text{3D Corrected Global POAI}}
Structure ShadingRear-side irradiance loss from mounting structure shadows on bifacial modulesLstruct=Structure Shading Loss×1003D Corrected Global POAIL_{struct} = \frac{\sum \text{Structure Shading Loss} \times 100}{\sum \text{3D Corrected Global POAI}}
Backside IrradianceEffective irradiance gain from rear-side illumination of bifacial modules (shown as negative loss)Lback=Backside Irradiance×(100)3D Corrected Global POAIL_{back} = \frac{\sum \text{Backside Irradiance} \times (-100)}{\sum \text{3D Corrected Global POAI}}
Back MismatchPower loss from non-uniform rear-side irradiance distribution across bifacial modulesLback_mis=DC Power Lost due to Back Mismatch×1003D Corrected Global POAIL_{back\_mis} = \frac{\sum \text{DC Power Lost due to Back Mismatch} \times 100}{\sum \text{3D Corrected Global POAI}}

DC Performance Losses

These losses occur during DC power generation. They are derived from DC Field Nodal Data parameters and normalized by DC Power at STC.
Loss ParameterDescriptionCalculation
Electrical ShadingDC power loss from partial shading causing electrical mismatch and bypass diode activationLelec=DC Power Lost due to Electrical Shading×100DC Power at STCL_{elec} = \frac{\sum \text{DC Power Lost due to Electrical Shading} \times 100}{\sum \text{DC Power at STC}}
Module IrradiancePower deviation from STC due to operating at irradiance levels different from 1000 W/m²Lirr=(DC Power at STCDC Power at 25C)×100DC Power at STCL_{irr} = \frac{\sum (\text{DC Power at STC} - \text{DC Power at 25C}) \times 100}{\sum \text{DC Power at STC}}
Module TemperaturePower loss from module operating temperatures above the 25°C STC referenceLtemp=(DC Power at 25CDC Power at MPP)×100DC Power at STCL_{temp} = \frac{\sum (\text{DC Power at 25C} - \text{DC Power at MPP}) \times 100}{\sum \text{DC Power at STC}}
Module MismatchPower loss from electrical parameter variations between modules in a string or arrayLmis=DC Power Lost due to Module Mismatch×100DC Power at STCL_{mis} = \frac{\sum \text{DC Power Lost due to Module Mismatch} \times 100}{\sum \text{DC Power at STC}}
LID (Light Induced Degradation)Initial power loss occurring in the first hours of light exposure, primarily in crystalline silicon modulesLLID=DC Power Lost due to LID×100DC Power at STCL_{LID} = \frac{\sum \text{DC Power Lost due to LID} \times 100}{\sum \text{DC Power at STC}}
Module QualityPower deviation from nameplate due to module binning and manufacturing tolerancesLqual=DC Power Lost due to Module Quality×100DC Power at STCL_{qual} = \frac{\sum \text{DC Power Lost due to Module Quality} \times 100}{\sum \text{DC Power at STC}}
DC HealthUser-defined DC system losses to account for factors such as module soiling non-uniformity or connection degradationLhealth=DC Power Lost due to DC Health×100DC Power at STCL_{health} = \frac{\sum \text{DC Power Lost due to DC Health} \times 100}{\sum \text{DC Power at STC}}
DC WiringResistive losses in DC cables between modules and inverter inputsLwire=Ohmic Power Loss×100DC Power at STCL_{wire} = \frac{\sum \text{Ohmic Power Loss} \times 100}{\sum \text{DC Power at STC}}
Inverter LimitationPower loss when the inverter operates off the maximum power point due to voltage window or power clipping constraintsLinv_lim=Inverter Limitation×100DC Power at STCL_{inv\_lim} = \frac{\sum \text{Inverter Limitation} \times 100}{\sum \text{DC Power at STC}}
Inverter EfficiencyPower loss in the DC-to-AC conversion process based on the inverter efficiency curveLinv_eff=(DC PowerAC Power)×100DC Power at STCL_{inv\_eff} = \frac{\sum (\text{DC Power} - \text{AC Power}) \times 100}{\sum \text{DC Power at STC}}

AC System Losses

These losses occur in the AC system after the inverter. They are derived from Array Nodal Data parameters and normalized by Total AC Power from Inverters.
Loss ParameterDescriptionCalculation
Inverter CoolingAuxiliary power consumption for inverter thermal management systemsLcool=Shelter Cooling Loss×100Total AC Power from InvertersL_{cool} = \frac{\sum \text{Shelter Cooling Loss} \times 100}{\sum \text{Total AC Power from Inverters}}
Tracker MotorAuxiliary power consumption for single-axis tracker motor operationLtrack=Tracker Motor Loss×100Total AC Power from InvertersL_{track} = \frac{\sum \text{Tracker Motor Loss} \times 100}{\sum \text{Total AC Power from Inverters}}
Data AcquisitionAuxiliary power consumption for monitoring and data acquisition systemsLDAS=Data Acquisition System Loss×100Total AC Power from InvertersL_{DAS} = \frac{\sum \text{Data Acquisition System Loss} \times 100}{\sum \text{Total AC Power from Inverters}}
MV TransformersPower losses in medium-voltage transformers at the array levelLMV=Transformer Losses×100Total AC Power from InvertersL_{MV} = \frac{\sum \text{Transformer Losses} \times 100}{\sum \text{Total AC Power from Inverters}}
AC Collection LinesResistive losses in the medium-voltage collection system between arrays and the plant substationLcoll=AC Collection Loss×100Total AC Power from InvertersL_{coll} = \frac{\sum \text{AC Collection Loss} \times 100}{\sum \text{Total AC Power from Inverters}}
DegradationAnnual module power degradation applied at the array levelLdeg=(Total AC Power from InvertersAC Power After Degradation)×100Total AC Power from InvertersL_{deg} = \frac{\sum (\text{Total AC Power from Inverters} - \text{AC Power After Degradation}) \times 100}{\sum \text{Total AC Power from Inverters}}

Plant-Level Losses

These losses occur at the plant level and affect the final energy delivered to the grid. They are derived from System Nodal Data parameters.
Loss ParameterDescriptionCalculation
HV TransformersPower losses in high-voltage transformers at the plant substationLHV=AC Power Lost due to HV Transformer(s)×100HV Transformer and Transmission Line InputL_{HV} = \frac{\sum \text{AC Power Lost due to HV Transformer(s)} \times 100}{\sum \text{HV Transformer and Transmission Line Input}}
Transmission LinesPower losses in transmission lines between the plant and point of interconnectionLtrans=AC Power Lost due to Transmission Line(s)×100HV Transformer and Transmission Line InputL_{trans} = \frac{\sum \text{AC Power Lost due to Transmission Line(s)} \times 100}{\sum \text{HV Transformer and Transmission Line Input}}
LGIA LimitationEnergy curtailment when plant output exceeds the interconnection agreement limitLLGIA=AC Power Lost due to Plant Output Limit×100HV Transformer and Transmission Line InputL_{LGIA} = \frac{\sum \text{AC Power Lost due to Plant Output Limit} \times 100}{\sum \text{HV Transformer and Transmission Line Input}}
AvailabilityEnergy loss from planned and unplanned system downtimeLavail=(Transformer and Transmission Line OutputAC Power after Availability)×100Transformer and Transmission Line OutputL_{avail} = \frac{\sum (\text{Transformer and Transmission Line Output} - \text{AC Power after Availability}) \times 100}{\sum \text{Transformer and Transmission Line Output}}

Parameter Reference by Nodal Data Level

Nodal Data LevelParameters Used in Loss Calculations
DC FieldGHI (from System), Global POAI, 3D Corrected Global POAI, Horizon Shaded Global POAI, Near Shaded Global POAI, Global POAI After Soiling, Global POAI After IAM, Effective Global POAI, Effective Back POAI Lost due to BiFaciality, Structure Shading Loss, Backside Irradiance, DC Power Lost due to Back Mismatch, DC Power Lost due to Electrical Shading, DC Power at STC, DC Power at 25C, DC Power at MPP, DC Power Lost due to Module Mismatch, DC Power Lost due to LID, DC Power Lost due to Module Quality, DC Power Lost due to DC Health, Ohmic Power Loss
InverterInverter Limitation, DC Power, AC Power
ArrayShelter Cooling Loss, Tracker Motor Loss, Data Acquisition System Loss, Transformer Losses, AC Collection Loss, Total AC Power from Inverters, AC Power After Degradation
SystemGHI, AC Power Lost due to HV Transformer(s), AC Power Lost due to Transmission Line(s), HV Transformer and Transmission Line Input, AC Power Lost due to Plant Output Limit, Transformer and Transmission Line Output, AC Power after Availability